
OMA

Software Developers Kit

Documentation

1

1 INTRODUCTION... 2

2 USING THE SDK .. 3

3 SDK FUNCTIONS... 6

SDK_Image_Copy...6

SDK_Image_CopyTemp ..6

SDK_Image_Create...6

SDK_Image_Free..6

SDK_Image_Refresh...7

SDK_Image_2Buffer..7

SDK_Image_2Temp ..7

SDK_Image_SetPixel ..7

SDK_Image_GetPixel ..8

SDK_Image_InterpPixel...8

SDK_Image_GetMaxPixel ...8

SDK_Image_GetMinPixel ..8

SDK_Image_GetMaxPixelX ...9

SDK_Image_GetMinPixelX ..9

SDK_Image_GetMaxPixelY ...9

SDK_Image_GetMinPixelY ..9

4 OMA RETURN VALUES... 10

5 EXAMPLES... 11

6 LICENSE... 14

2

1 Introduction

The OMA Software Developers Kit (SDK) has been written as an aide to those users that

need to expand the existing OMA functionality. The source code for OMA is available

under the GNU Public License, and the Developer's bundle for OS X contains the OMA

Project file for Apple's XCode 2.1 compiler. This compiler and Integrated Developers

Environment (IDE) is available for download from the Apple Developers Connections

(ADC) website.

The SDK is also released under the GNU Public License, in the interests of serving the

OMA 'family', by its author Peter Kalt.

Peter Kalt is a Senior Research Fellow at the University of Adelaide, and a long-time

OMA contributor and user. He uses OMA for the processing of photometric and velocity

data collected in laser imaging experiments in turbulent non-reacting flows and flames.

3

2 Using the SDK

The SDK provides a framework of functions, written in C, to serve as a convenient

interface between the programmer and the data structures underlying the OMA

functionality. Specifically, the SDK frees the programmer from many tedious tasks in

managing data structures and accessing stored information, manipulating headers and

footers, etc.

When a developer needs to write some specific image processing functionality not

already implemented in OMA, there is the option to write a new OMA command. The

following steps outline how this is done.

1) Open CUSTOM.C

It is not recommended to add functions to the implementation files within OMA.

These should be left untouched. Instead, new functions should be added to the file

CUSTOM.c. This file is the repository for all custom commands in OMA, and

already has the suitable headers needed to access the SDK.

2) Add Functional PROTOTYPE

Add the function prototype at the beginning of the file, amongst the other similar

declarations. It is suggested that alphabetical order of the function names are

preserved. If the function we are creating were to be called New_OMA_Function,

then we would add the following:

4

int New_OMA_Function();

[NB: The custom function should return an int not void. It is expected that all

OMA Command line functions return an integer value, which should correspond to a

defined return state, indicating that the function executed successfully (or not). These

return values are defined in the header (custom.h) and are described in Section 4

below.]

3) Add COMMAND HANDLER

First step in adding a new OMA command is to think of a 6-character command

name that can be parsed from the command line. The command name should be

descriptive, unique and should not contain spaces or special characters.

You can test whether or not your new command name is suitable, by typing it in the

command window of OMA whilst it is running. If the command is unique and

suitable, and not yet used, you will get the following error:

OMA>NEWOMA

No such command: NEWOMA

OMA>

Add the command to the command handler at the beginning of the custom.c file.

Following our example, the function New_OMA_Function(), will be called

using the command name NEWOMA. Add the command name and its function to the

command list in alphabetical order.

{{"NEWOMA"}, New_OMA_Function},

[NB: It is IMPORTANT that the command name is capitalised in this list. Internally,

all input to the command window is capitalised before use, even if it is entered in

lower case.]

[NB: It is possible to have a 5-character OMA command name, but the trailing space

must be included in the string within the quotes.]

{{"5CHAR_"}, Another_OMA_Function},

4) Add the new function at the end of CUSTOM.c

If the function requires command line parameters:

int New_OMA_Function(int index, int n)
{return OMA_OK;}

Otherwise,

5

int New_OMA_Function()
{return OMA_OK;}

is sufficient.

5) Use the SDK to get access to the OMA data in the image buffer
or temporary buffers.

• Allocate Image data structures in the function. The Image and Field data

structures are used to store a 2-D array of pixels images and 3-component vectors,

respectively. Each instance of an Image or Field needs to be allocated within the

function.

Image myImage;
Field myField;

• Call the SDK functions by reference.

SDK_Image_Copy(&myImage);

• Manipulate the IMAGE data structures. you have defined using the SDK,

rather than the OMA data structures.

for (I=0;I<width;I++){
 for (J=0; J<height; J++){

SDK_Image_SetPixel(&myImage, I, J, 3.1417);
 }

 }

• Once you have finished your processing, transfer your data structures back to

OMA using the SDK.

SDK_Image_2Buffer(&myImage);

• Finally, refresh the OMA data structures and clean up the memory that has

been used.

SDK_Image_Free(&myImage);
SDK_Image_Refresh();

6

3 SDK Functions

SDK_Image_Copy

int SDK_Image_Copy (Image *imptr)
Input: *imptr A pointer to an Image structure

Returns: int OMA Error Code

Copies the image data currently in the OMA image buffer to an Image structure.

SDK_Image_CopyTemp

int SDK_Image_CopyTemp (Image *imptr, int n)
Input: *imptr A pointer to an Image structure

n The temporary image buffer number (0-9)

Returns: int OMA Error Code

Copies the image data currently in the OMA temporary buffer #n to an Image
structure.

SDK_Image_Create

int SDK_Image_Create (Image *imptr, short width, short height)
Input: *imptr A pointer to an Image structure

width Width of the new image

height Height of the new image

Returns: int OMA Error Code

Creates a new Image structure with the specified width and height. The new

Image structure has pixel values initialized to zero.

SDK_Image_Free

int SDK_Image_Free (Image *imptr)
Input: *imptr A pointer to an Image structure

Output: int OMA Error Code

Release the memory used by an Image structure.

7

SDK_Image_Refresh

int SDK_Image_Copy (Image *imptr)
Input: NONE

Output: int OMA Error Code

Refresh the properties of the OMA image buffers after we have been touching

them.

SDK_Image_2Buffer

int SDK_Image_2Buffer (Image *imptr)
Input: *imptr A pointer to an Image structure

Output: int OMA Error Code

Moves the data in a SDK Image structure to the OMA Image buffer.

SDK_Image_2Temp

int SDK_Image_2Temp (Image *imptr, int n)
Input: *imptr A pointer to an Image structure

n The temporary image buffer number (0-9)

Output: int OMA Error Code

Moves the data in a SDK Image structure to the OMA temporary image buffer #n.

SDK_Image_SetPixel

int SDK_Image_SetPixel (Image *imptr, short xpos,
short ypos, DATAWORD value)

Input: *imptr A pointer to an Image structure

xpos X position of the pixel to be changed

ypos y position of the pixel to be changed

value new value of the pixel (xpos, ypos)

Output: int OMA Error Code

Sets pixel (xpos, ypos) in the SDK Image structure to value.

8

SDK_Image_GetPixel

DATAWORD SDK_Image_GetPixel (Image *imptr, short xpos,
short ypos)

Input: *imptr A pointer to an Image structure

xpos X position of the pixel to be changed

ypos y position of the pixel to be changed

Output: DATAWORD Function returns the value of the pixel

Gets the value of pixel (xpos, ypos) in the SDK Image.

SDK_Image_InterpPixel

DATAWORD SDK_Image_GetPixel (Image *imptr, float x,
float y)

Input: *imptr A pointer to an Image structure

x X position of the pixel to be changed

y y position of the pixel to be changed

Output: DATAWORD Function returns the value of the

interpolated pixel value

Returns the bilinear interpolated value of the pixel around (x, y) in the SDK

Image structure. The position is given by floats (x, y) which can represent

fractional values. 8-parameter bilinear interpolation is used.

SDK_Image_GetMaxPixel

SDK_Image_GetMinPixel

DATAWORD SDK_Image_GetMaxPixel (Image *imptr)
DATAWORD SDK_Image_GetMinPixel (Image *imptr)

Input: *imptr A pointer to an Image structure

Output: DATAWORD Function returns a pixel value.

These functions returns the value of the maximum/minimum pixel in the SDK

Image.

9

SDK_Image_GetMaxPixelX

SDK_Image_GetMinPixelX

int SDK_Image_GetMaxPixelX (Image *imptr)
int SDK_Image_GetMinPixelX (Image *imptr)

Input: *imptr A pointer to an Image structure

Output: int Function returns position of pixel in row.

These functions returns the x-position of the maximum/minimum pixel in the SDK

Image.

SDK_Image_GetMaxPixelY

SDK_Image_GetMinPixelY

int SDK_Image_GetMaxPixelY (Image *imptr)
int SDK_Image_GetMinPixelY (Image *imptr)

Input: *imptr A pointer to an Image structure

Output: int Function returns position of pixel in

column.

These functions returns the y-position of the maximum/minimum pixel in the SDK

Image.

10

4 OMA Return values

The following values are defined in custom.c and should be used to indicate a successful

return from the custom command, or to assist in determining which error caused failure.

Error handling is the responsibility of the programmer, however.

#define OMA_OK 0
Indicates that the command completed successfully.

#define OMA_MEMORY -1
Indicates that the command failed due to running out of memory, or failing to allocate

new memory.

#define OMA_FILE -2
Indicates that a OMA was unable to open a file it needed. This could be because

the path set in the control panel is not set correctly.

#define OMA_RANGE -4
This error indicates that OMA was passed a value out of range. Normally, OMA should

try to compensate and correct for range issues, such as asking for the value of a pixel

outside the bounds of the image. Sometimes, it is better to simply end the function and

leave with this error, such as trying to access a TEMPORARY image buffer # greater

than those allowed by OMA.

#define OMA_NOEXIST -5
This error is used to indicate that OMA was unable to find something it had assumed was

there.

#define OMA_MISC -6
This OMA error code is used for general errors that are not more suitably described by

any other code.

#define OMA_ARGS -7
This error is used when OMA a command has been passed the wrong number of

command line arguments and is unable to substitute defaults.

11

5 Examples

//***//
//** FLIPH - Flip the image horizontally *//
//***//
int
fliph ()
{

int nc,nt;
Image Im_p;

if(SDK_Image_Create(&Im_p,header[NCHAN],header[NTRAK])!=OMA_OK){
beep();
printf("SDK_Image_Create returned an error\n");
return OMA_MEMORY;

}

for(nt=0; nt<header[NTRAK]; nt++) {
for (nc =0; nc<header[NCHAN]; nc++){

SDK_Image_SetPixel(&Im_p,header[NCHAN]-1-nc, nt,
 PKGetPixel(nc,nt));

}
}
SDK_Image_2Buffer(&Im_p);
SDK_Image_Free(&Im_p);
SDK_Refresh();
return OMA_OK;

}

//***//
//** FLIPV - Flip the image horizontally *//
//***//
int
flipv ()
{

int nc,nt;
Image myimage;

if(SDK_Image_Create (&myimage, header[NCHAN],header[NTRAK])!=OMA_OK){
beep();
nomemory();
return OMA_MEMORY;

}

for(nt=0; nt<header[NTRAK]; nt++) {
for (nc =0; nc<header[NCHAN]; nc++){

SDK_Image_SetPixel(&myimage, nc,header[NTRAK]-1- nt,
PKGetPixel(nc,nt));

}
}
SDK_Image_2Buffer(&myimage);
SDK_Image_Free(&myimage);
SDK_Refresh();
return OMA_OK;

}

12

//***//
//** POLARN - Custom function by pkalt used for polaristion processing *//
//***//
int
polarn (int n, int index)
{

int nc,nt;
Image NumSamp;
Image Result;
Image Im_Buff;
Image T0_Buff;
int width, height;
DATAWORD numerator, denominator;
DATAWORD p_ratio, tempval;

// Copy the denominator from the file in Temp_Image = 0
if(SDK_Image_CopyTemp(&T0_Buff, 0)!=OMA_OK){

beep();
printf("Need to have the denominator in temp buffer 0\n");
return OMA_MEMORY;

}

// Create an image with from the file in Buffer
if(SDK_Image_Copy(&Im_Buff)!=OMA_OK){

beep();
printf("SDK_Image_Copy() returned an error\n");
return OMA_MEMORY;

}
// Get the dimensions of this image for the other new ones
width = header[NCHAN];
height = header[NTRAK];

// Create new image structures for Result
if(SDK_Image_Create(&Result, width, height)!=OMA_OK){

beep();
printf("SDK_Image_Create() returned an error\n");
return OMA_MEMORY;

}

// If there is no existing NumSamp in temp buffer 2 create,
// otherwise use it
if(SDK_Image_CopyTemp(&NumSamp, 2)!=OMA_OK){

if (SDK_Image_Create(&NumSamp, width, height)!=OMA_OK){
beep();
printf("SDK_Image_Create() returned an error\n");
return OMA_MEMORY;

}
}

// For each row and column process each pixel in turn...
for(nt=0; nt<height; nt++) {

for (nc =0; nc<width; nc++){
numerator = SDK_Image_GetPixel(&Im_Buff, nc, nt);
denominator = SDK_Image_GetPixel(&T0_Buff, nc, nt);
if (denominator!=0){

p_ratio = numerator/denominator;
SDK_Image_SetPixel(&Result, nc, nt, p_ratio);
tempval = SDK_Image_GetPixel(&NumSamp, nc, nt);
SDK_Image_SetPixel(&NumSamp, nc, nt, tempval+1);

} else {
SDK_Image_SetPixel(&Result, nc, nt,

13

(DATAWORD)1.000000);
}

}
}

// Once done, get ready to leave
SDK_Image_2Buffer(&Result);
//SDK_Image_2Temp(&Result, 1);
SDK_Image_2Temp(&NumSamp, 2);

// Free the old Image data structures
SDK_Image_Free(&Im_Buff);
SDK_Image_Free(&Result);
SDK_Image_Free(&T0_Buff);
SDK_Image_Free(&NumSamp);

SDK_Refresh();
return OMA_OK;

}

14

6 License

OMA Software Developers Kit

Copyright (C) 2006, Peter Kalt

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

