Sooting Yale Coflow Diffusion Flames


Standard Constant-Mass Doped Flames

For details on the flame conditions, thermal boundary conditions, flowrates and mole fractions, and burner dimensions, click here.

Soot temperatures and volume fractions are based on color ratio pyrometry using a Nikon D90 camera. Data was published in Ref. **. Here, soot optical properties were assumed to be constant throughout the flame with the emissivity varying with wavelength to the -1.38 power.

The data is in a tab delimited, formatted text file, consisting of a two-dimensional array of floating point values. The data array size is 1668 x 383. The matrix represents an image with pixel spacing of 0.035 mm (28.412 pixels/mm). The first element of the matrix corresponds to the value in the upper left corner of the images shown. This type of data can be read in directly to Matlab using the load command, or to Python using the numpy.loadtxt command.

Use the following table to navigate directly to the surrogate fuel or compound of interest.


Temperature Soot volume fraction
1 Surrogate Diesel - V0A [1]
Surrogate Diesel - V0A [1]
2 Surrogate Diesel - V0B [1]
Surrogate Diesel - V0B [1]
3 Surrogate Diesel - V1 [1]
Surrogate Diesel - V1 [1]
4 Surrogate Diesel - V2 [1]
Surrogate Diesel - V2 [1]
5 Surrogate Jet fuel - Agosta et al [2] Surrogate Jet fuel - Agosta et al [2]
6 Surrogate Jet fuel - Dooley et al [3] Surrogate Jet fuel - Dooley et al [3]
7 Surrogate Jet fuel - Honnet et al [4] Surrogate Jet fuel - Honnet et al [4]
8 Surrogate Jet fuel - Mensch et al [5] Surrogate Jet fuel - Mensch et al [5]
9 Surrogate Jet fuel - Violi et al [6] Surrogate Jet fuel - Violi et al [6]




SDV0A_T.txt SDV0A_fv.txt




SDV0B_T.txt SDV0B_fv.txt




SDV1_T.txt SDV1_fv.txt




SDV2_T.txt SDV2_fv.txt




SJF_Agosta_T.txt SJF_Agosta_fv.txt




SJF_Dooley_T.txt SJF_Dooley_fv.txt




SJF_Honnet_T.txt SJF_Honnet_fv.txt




SJF_Mensch_T.txt SJF_Mensch_fv.txt




SJF_Violi_T.txt SJF_Violi_fv.txt

  1. C. J. Mueller, W. J. Cannella, T. J. Bruno, B. Bunting, H. D. Dettman, J. A. Franz, M. L. Huber, M. Natarajan, W. J. Pitz, M. A. Ratclif, and K. Wright, “Methodology for formulating diesel surrogate fuels with accurate compositional, ignition-quality, and volatility characteristics,” Energy and Fuels, vol. 26, no. 6, pp. 3284–3303, 2012.
  2. A. Agosta, N. P. Cernansky, D. L. Miller, T. Faravelli, and E. Ranzi, “Reference components of jet fuels: Kinetic modeling and experimental results,” Experimental Thermal and Fluid Science, vol. 28, no. 7, pp. 701–708, 2004.
  3. S. Dooley, S. H. Won, J. Heyne, T. I. Farouk, Y. Ju, F. L. Dryer, K. Kumar, X. Hui, C. J. Sung, H. Wang, M. A. Oehlschlaeger, V. Iyer, S. Iyer, T. A. Litzinger, R. J. Santoro, T. Malewicki, and K. Brezinsky, “The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena,” Combustion and Flame, vol. 159, no. 4, pp. 1444–1466, 2012.
  4. S. Honnet, K. Seshadri, U. Niemann, and N. Peters, “A surrogate fuel for kerosene,” Proceedings of the Combustion Institute, vol. 32 I, no. 1, pp. 485–492, 2009.
  5. A. Mensch, R. J. Santoro, T. A. Litzinger, and S.-Y. Lee, “Sooting characteristics of surrogates for jet fuels,” Combustion and Flame, vol. 157, pp. 1097–1105, 2010.
  6. A. Violi, S. Yan, E. G. Eddings, A. F. Sarofm, S. Granata, T. Faravelli, and E. Ranzi, “Experimental formulation and kinetic model for JP-8 surrogate mixtures,” Combustion Science and Technology, vol. 174, no. 11-12, pp. 399–417, 2002.